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A B S T R A C T   

Promoting energy efficiency is crucial for reducing energy consumption, yet its impact on human 
health remains discussed. This study examines the relationship between household energy effi-
ciency, ambient air pollution, climate change, and mortality risk from chronic respiratory dis-
eases. The study collected observational data in six major cities in Taiwan from 2008 to 2020. The 
energy efficiency level was determined using the input demand function derived from the sto-
chastic frontier analysis (SFA). Subsequently, analysis was conducted employing a dynamic panel 
data model and a pooled mean group estimator. The study's findings indicate that enhancing 
household energy efficiency decreases the mortality rate associated with chronic respiratory 
diseases. Specifically, at the highest level of energy efficiency (99%), the relative risk reaches its 
lowest value of 0.639 (95% CI: 0.58–0.70). Additionally, a positive exposure-response relation-
ship is observed between degree days and ambient air pollution (PM2.5, PM10, and SO2), asso-
ciated with an increased risk of death from chronic respiratory diseases. These results underscore 
the importance of initiatives to enhance energy efficiency programs in households, particularly in 
metropolitan areas.   

1. Introduction 

Many studies have shown that global energy consumption will continue to increase over time; it will further increase the potential 
for energy and health crises in the future (Krishnan et al., 2021). In their study, Moodley and Trois (2021) stated that the energy 
demand would increase up to 48% in the next twenty years, along with the growth of the human population. It is also considered that 
this increase in energy demand will continue to occur substantially in the next few decades (Zohuri, 2020). This increase is also 
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inseparable from industrial activity in both developing and developed countries, where the use of energy is still dominated by fossil 
energy (Rafiee and Khalilpour, 2019). Recent reports show that global electricity demand is growing faster than renewables, which 
shows a significant increase in the consumption of fossil fuels (IEA, 2021). 

Based on the Bureau of Energy (BOE) reports, energy consumption in Taiwan has increased by 12.48% from 2004 to 2020. Until 
2020, most of the energy in Taiwan is produced from fossil fuels in the form of coal and crude oil, i.e., by 30% and 44.17%, 
respectively. In addition, energy consumption is inseparable from energy demand arising from the transportation and household 
sectors, which are the sectors with the highest energy demand in Taiwan apart from the industrial sector (BOE, 2020). Specifically for 
the transportation sector, until the end of 2021, the number of motorized vehicles in Taiwan reached 22.6 million units, with 92.5% 
still using gasoline (MOTC, 2022). It raises the potential for air pollution in Taiwan, posing health risks (Adha et al., 2022; von 
Schneidemesser et al., 2019). The study results prove that exposure to air pollution such as fine particles (PM2.5) can cause respiratory 
and cardiovascular diseases (Al-Kindi et al., 2020; B. Chen and Kan, 2008; WHO, 2013). 

According to the report from WHO, respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) cause 
the death of more than four million people globally each year, and specifically for COPD is projected to be the fifth leading cause of 
death in the world by 2030 (WHO, 2007; Zafirah et al., 2021). In the Taiwan case, asthma and COPD prevalence has increased to 
15–20% (Hayes et al., 2012; Zafirah et al., 2021). Based on data released by the Ministry of Health and Welfare of Taiwan, in 2020, the 
number of deaths caused by chronic lower respiratory diseases such as COPD, chronic bronchitis, emphysema, and asthma (ICD-10 No. 
J40-J47) amounted to 5657 cases of death, with the average death rate increased by 0.7% since 2008. This number makes deaths 
caused by respiratory diseases is the seventh-highest cause of death in Taiwan (MOHW, 2021). 

Environmental factors such as air pollution and climate change have long been associated with chronic respiratory diseases 
(Zafirah et al., 2021). The study conducted by Y.-C. Wang et al. (2012) showed that extreme heat or cold increases emergency room 
visit (ERV) risks significantly in Taiwan. Several other studies have examined the phenomenon of asymmetric fluctuations in daily 
temperature (Shen et al., 2014; Shen et al., 2018), particularly focusing on the diurnal temperature range, and some studies have found 
its significant associations with chronic respiratory diseases (Lim et al., 2012; Z. Wang et al., 2020). The study results from Cheng and 
Kan (2012) also showed that PM10 and the extremely low temperature significantly impacted daily mortality in Shanghai, China. A 
similar situation was found in Europe, where heatwaves have consistently shown a synergistic effect of air pollution and high tem-
peratures (De Sario et al., 2013). Then, these extreme weather conditions are closely related to climate change caused by air pollution 
(OECD, 2019), where air pollution is the highest cause of diseases and premature death in the world today (Landrigan et al., 2018). 
Aside from particulate matter, sulfur dioxide (SO2) is a known cause of respiratory diseases (Yu et al., 2018). SO2 causes a decrease in 
pulmonary function, according to the research of X. Chen et al. (2020) and Gao et al. (2020). This is also linked to the effect of SO2, 
which can increase the mortality rate from respiratory diseases (J. Chen et al., 2021; Orellano et al., 2021). 

In addition to environmental factors, the results of a study by Faizan and Thakur (2019) show that energy consumption such as 
solid fuels for cooking has a strong relationship with respiratory diseases in India. The results of the study from Jessel et al. (2019) also 
show a link between energy consumption, poverty, and climate change on health. Reducing health risks caused by energy con-
sumption, one of the efforts is to encourage energy-efficient technology in households (Westfall and Markowska, 2019). However, a 
study from Sharpe et al. (2015) showed the opposite result, where increased household energy efficiency may increase the risk of 
current asthma. 

In contrast to previous studies that used property data, residency periods, indices of multiple deprivations (IMD), and household 
energy efficiency ratings to measure energy efficiency (Sharpe et al., 2015), this study will use an energy efficiency frontier based on 
the input demand function with SFA, stochastic frontier analysis method (Adha et al., 2021; Filippini and Hunt, 2011, 2012). This 
approach makes it possible to obtain energy efficiency based on socio-economic factors. Thus, this study can capture the socio- 
economic impact of households' energy efficiency on chronic respiratory diseases in Taiwan. In addition, this study will use PM2.5 
levels and changes in cooling and heating degree days as factors that indicate climate change. To our knowledge, there are no previous 
studies using energy efficiency frontiers in analyzing the impact of energy efficiency on chronic respiratory diseases. Therefore, this 
study can contribute to the literature that measures the impact of energy efficiency and environmental quality on respiratory diseases. 

The significance of this study lies in its scientific contribution to understanding the complex connection between energy efficiency, 
climate change, and respiratory diseases in Taiwan. By employing a two-stage approach that utilizes the energy efficiency frontier 
based on the input demand function, this study offers a comprehensive assessment of the impact of energy efficiency on chronic 
respiratory diseases. Furthermore, incorporating indicators such as PM2.5, PM10, and SO2 levels and differences in cooling and heating 
degree days allows for a holistic examination of climate change. 

The findings of this research hold several scientific contributions. Firstly, this study provides valuable insights into the association 
between energy consumption patterns, energy efficiency, and respiratory health outcomes. By analyzing the specific context of 
Taiwan, this study expands the existing literature on the health risks posed by energy consumption and contributes to a deeper un-
derstanding of the underlying mechanisms. Secondly, the study adds to the scientific knowledge of the interplay between environ-
mental factors and respiratory diseases. By considering air pollution and climate change as influential factors, this research sheds light 
on the complex relationship between environmental quality and public health. Including fine particles and sulfur dioxide (SO2) 
emissions further enhances understanding of the impact of specific pollutants on respiratory health. 

Moreover, by utilizing socio-economic factors, the research procedure captures a more comprehensive understanding of the socio- 
economic impact of energy efficiency on respiratory diseases. This methodological contribution enhances the scientific toolkit for 
analyzing energy efficiency in the context of public health. Practically, the findings of this study have significant policy implications. It 
can inform the development of targeted interventions and strategies to mitigate health risks associated with energy consumption and 
improve respiratory health outcomes. The results may guide policymakers in designing energy planning initiatives that prioritize 
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efficiency and environmental sustainability, leading to improved public health and reduced respiratory disease burdens. 
The remaining paper has been organized as follows. Section 2 presents the data and methodology. Section 3 provides the results of 

the study, section 4 offers the discussions, and section 5 presents the conclusions and policy implication. 

2. Data and methodology 

2.1. Data 

Several data preprocessing steps will be undertaken to ensure the reliability and accuracy of the data used in this study. The study 
will focus on Taiwan's six major cities: Taipei, New Taipei, Taoyuan, Taichung, Tainan, and Kaohsiung. The geographical distribution 
of the study can be seen in the Fig. 1. The data on household energy consumption will be obtained from the annual statistics provided 
by the Urban and Regional Development Statistics, published by the National Development Council in Taiwan. This data will be used to 
measure household energy efficiency, which is crucial in understanding the impact on chronic respiratory diseases. 

In addition, climate change factors will be considered by utilizing heating and cooling degree days, which will be calculated based 
on the average daily temperature data obtained from the Taiwan Central Weather Bureau. This information will provide insights into 
the climate change and its potential effects on respiratory health. Degree days (DD) represent the prevailing temperature conditions in 
the external environment surrounding a specific location. DD is derived by combining two fundamental components: Heating Degree 
Days (HDD) and Cooling Degree Days (CDD) (Adha et al., 2022; Adha et al., 2021). 

HDD =
∑n

i=1
(Tbase − Tn)M (1)  

CDD =
∑n

i=1
(Tn − Tbase)M (2) 

Fig. 1. Geographical distribution of study sites within the six major cities in Taiwan.  
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The base temperature, denoted as Tbase, represents the threshold temperature used as a reference point for calculating degree days. 
To compute degree days, the average daily temperature, denoted as Tn, is determined by taking the mean of the daily maximum and 
minimum temperatures. Consequently, the degree day value is derived by summing the heating degree days (HDD) and cooling degree 
days (CDD) together. For environmental factors, data on fine particulate matter with a diameter lower than 2.5 μm (PM2.5), PM10, and 
sulfur dioxide (SO2) will be incorporated into the analysis. These data, which are important in assessing air pollution levels, will be 
obtained from reliable sources to ensure their accuracy and relevance to the study. 

Furthermore, to examine the relationship between chronic respiratory diseases and energy efficiency, data on the number of deaths 
caused by chronic respiratory diseases will be collected from the National Health Insurance database, which is maintained by the 

Table 1 
Descriptive statistics.  

Description Var Mean Std. dev. Min Max 

Electricity Consumption (109 kWh) EC 7.35 1.96 4.53 11.4 
Family Income (NT$) I 1,017,886 162,361.8 740,706 1,422,856 
Population Pop 2,681,138 665,749.2 1,873,005 4,030,954 
Space per household (ping) Space1 43.25 8.39 30.82 53.02 
Space per person (ping) Space2 13.56 2.68 9.27 17.89 
Population per household (Person) Size 3.09 1.03 2.45 6.34 
Mortality rate from respiratory diseases Res 575.83 117.41 334 860 
Degree Days DD 74.81 8.28 62.7 97.1 
Particulate matter/PM2.5 (μg/m3) PM25 25.28 6.45 12.5 33.5 
Particulate matter/PM10 (μg/m3) PM10 49.31 13.67 23.6 77.8 
Sulfur dioxide/SO2 (ppb) SO2 3.5 1.18 1.87 7.4  

Table 2 
Cross-sectional dependence test.  

CD Test Pesaran CD Test Frees Friedman 

H0 5.225*** 0.891** 33.626*** 

Note: *, ** and *** denote 10%, 5% and 1% levels of significance respectively. 

Table 3 
Panel unit root test.  

Variables Levels CIPS First Differences CIPS 

EC − 2.301* − 4.484*** 
I − 2.461** − 4.303*** 
Pop − 1.274 − 2.177* 
Space1 − 3.475*** − 3.869*** 
Space2 − 2.105 − 2.739*** 
Size 0.480 − 2.375** 
Res − 2.576** − 4.203*** 
DD − 2.414** − 4.054*** 
PM25 − 2.340** − 3.360*** 
PM10 − 2.324* − 3.790*** 
SO2 − 2.428** − 4.154*** 

Note: *, ** and *** denote 10%, 5% and 1% levels of significance respectively, and optimum lag 
determined by AIC. 

Table 4 
Panel cointegration test.  

Pedroni Westerlund Kao 

Test Statistic Test Statistic Test Statistic 

Panel v 3.197*** Gt − 4.082*** Modified DF − 1.952** 
Panel rho − 0.216 Ga − 0.437 DF − 3.067*** 
Panel t − 3.262*** Pt − 3.163* ADF − 0.911 
Panel ADF − 2.263** Pa − 0.367 UMDF − 3.051*** 
Group rho 2.185**   UDF − 3.480*** 
Group t − 0.401     
Group ADF − 2.726***     

Note: *, ** and *** denote 10%, 5% and 1% levels of significance respectively. 
The lag lengths are selected using AIC. 
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Table 5 
Determinant of energy efficiency frontier.   

Persistent Transient 

Coefficient Std. error Coefficient Std. error 

lnI 0.144** 0.063 0.151*** 0.092 
lnPop 0.739*** 0.154 0.573*** 0.095 
lnSpace1 − 0.005 0.136 − 0.176* 0.075 
lnSpace2 0.213** 0.105 0.398*** 0.052 
lnSize − 0.045*** 0.016 − 0.053*** 0.019 
Constant (α) 9.282*** 2.090 11.949*** 2.132 
σu − 16.049* 1.641 − 6.248*** 0.160 
σv − 7.620*** 0.160 − 22.765** 9.210 
Regional effects No  Yes  
log-likelihood 186.526  187.088  
R2 0.954  0.962  

Note: ***, ** and * denotes statistical significance at 1%, 5% and 10% level respectively. 

Table 6 
Energy efficiency estimations.   

Mean Std. Dev Min Max 

Persistent 0.841 0.094 0.718 1.000 
Transient 0.965 0.094 0.902 0.999 
Overall efficiency 0.812 0.089 0.681 0.999  

Table 7 
Estimation results.  

Dependent var.: Mortality rate of respiratory diseases DOLS DFE MG PMG 

Long Run     
Efficiency rate − 2.386** 

(1.027) 
2.016** 
(0.875) 

6.339 
(14.106) 

− 10.028** 
(4.159) 

Degree days 0.007 
(0.004) 

− 0.003 
(0.008) 

− 0.063 
(0.113) 

0.035*** 
(0.006) 

PM2.5 0.013** 
(0.006) 

− 0.017*** 
(0.005) 

− 0.085 
(0.146) 

0.104*** 
(0.029) 

PM10 0.011** 
(0.004) 

0.022* 
(0.012) 

0.210* 
(0.112) 

0.065* 
(0.037) 

SO2 0.025 
(0.038) 

− 0.117 
(0.087) 

− 2.527** 
(0.998) 

0.581* 
(0.330) 

Short Run     
ECT  − 0.454** 

(0.202) 
− 0.140 
(0.665) 

− 0.037 
(0.062) 

Δ Efficiency rate  − 1.721 
(1.529) 

− 13.442* 
(9.803) 

− 3.011 
(2.393) 

Δ Degree days  0.009** 
(0.004) 

0.044 
(0.036) 

0.012*** 
(0.004) 

Δ PM2.5  − 0.003 
(0.007) 

− 0.026*** 
(0.006) 

0.001 
(0.007) 

Δ PM10  − 0.012*** 
(0.002) 

− 0.081*** 
(0.025) 

0.027*** 
(0.006) 

Δ SO2  0.109 
(0.084) 

1.456** 
(0.604) 

0.207* 
(0.124) 

Cons  2.145 
(1.492) 

− 16.196 
(10.020) 

0.372 
(0.470) 

R2 0.811 – – – 
Observations 54 72 72 72 

Cities 6 6 6 6 
Hausman test (MG-DFE)  – 0.79 – 
Chi2 (MG-DFE)  – 0.9397 – 
Hausman test (PMG-MG)  – – 2.79 
Chi2 (PMG-MG)  – – 0.5396 

Note:*, ** and *** denote 10%, 5% and 1% levels of significance respectively. 
The lag lengths are selected using Andrews-Lu Model and Moment Selection Criterion; MBIC, MAIC, MQIC. 
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Ministry of Health and Welfare. The 10th revision of the international classification of diseases (ICD-10) will be utilized to identify 
cases of chronic lower respiratory diseases (ICD-10 No. J40-J47) within the dataset. 

The study will employ a balanced panel data approach, utilizing observations from the six major cities in Taiwan over a period 
spanning from 2008 to 2020. This panel data format allows for analyzing longitudinal changes and trends in chronic respiratory 
diseases and their association with energy efficiency, climate changes, and environmental factors. Table 1 presents descriptive sta-
tistics, with column 1 providing descriptions of the variables, column 2 indicating their respective abbreviations, and columns 3 to 6 
displaying the average, standard deviation, minimum, and maximum values, respectively. Through these rigorous data preprocessing 
steps, the research data will be cleaned, aggregated, and prepared for subsequent analysis. This study aims to provide valuable insights 
into the relationship between energy efficiency, environmental factors, and chronic respiratory diseases in Taiwan's major cities by 
ensuring data accuracy and reliability. 

2.2. Methodology 

Energy efficiency measurement will use the energy demand frontier approach with the stochastic frontier analysis (SFA) method 
proposed by Filippini and Hunt (2011, 2012, 2015). This method commonly used for estimating household energy efficiency (Adha 
et al., 2021). This energy efficiency value was obtained from two models, namely the True Fixed Effect Model (TFEM) from Greene 
(2005a, 2005b) to obtain the value of transient efficiency, and the Fixed Effect Model from Kumbhakar and Heshmati (1995) to obtain 
the value of persistent efficiency. After getting the efficiency value of the two models, the total efficiency calculation is carried out. 

The function of residential energy demand in this study is as follows: 

Fig. 2. Overall efficiency rate.  
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ECit = f (Iit,Popit, Space1it,Space2it,Sizeit) (3) 

Where ECit is energy consumption at location i and time t. Iit is income per capita, Popit is population in study location, notably in six 
major cities in Taiwan. Space1it is space per household, additionally Space2it is space per person to describe housing condition. Sizeit is 
the population size per household energy user. 

Based on the approach used in this study, the logarithmic panel function of Eq. (3) will adopt a stochastic frontier function, as 
shown below: 

lnECit = α+αIlnIit +αPoplnPopit + αS1lnSpace1it +αS2lnSpace2it +αSZlnSizeit + vit + uit (4) 

In Eq. (4), the ln is the natural logarithm applied to each variable, α representing the estimated parameter and indicates the constant 
parameter. The error term in Eq. (4) consists of two parts. The first part is vit , which is a symmetric disturbance. The second part is 
uit which denotes the level of energy efficiency or information that confers the distance between the frontier value and the actual input. 
This function is a one-sided random disturbance that can change over time and is assumed to follow a half-normal distribution. 

Furthermore, the conditional mean of efficiency is used to estimate the level of energy efficiency adopted from Jondrow et al. 
(1982), as below: 

E[uit|vit + uit] (5) 

Besides, in calculating the energy efficiency level, it is given using the following equation: 

Fig. 3. Relative risk of respiratory diseases associated with energy efficiency.  
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Ef it =
Ef

it

Eit
= exp( − ûit) (6) 

Where the Eit is energy consumption in city i and year t and Ef
it is frontier energy demand. 

After getting the value of energy efficiency using the energy demand frontier, the next step is to estimate the impact of energy 
efficiency and environmental quality on chronic respiratory diseases using autoregressive distributed lag (ARDL) model. The ARDL 
model (Adha et al., 2022) is written as follows: 

Yit =
∑m

j=1
λijyi,t− j +

∑n

j=0
ϑijXi,t− j + μi + eit (7) 

The Eq. (7), Yit denotes the growth of the subject of study in location i and time t. i represents the location with i = 1, …, N, and t 
represents the time with t = 1, …, T. Besides, Xit is the vector of K × 1 regressors. λij,ϑij is the short-run dynamic coefficients, and μi is 
effect-specific group. The error correction model from the equation above is: 

ΔYit = θi
[
yi,t− j − φiXi,t− j

]∑m− 1

j=1
λijΔyi,t− j +

∑n− 1

j=0
ϑijΔXi,t− j + μi + eit (8) 

In the Eq. (8), ΔYit denotes the delta growth of the subject of study in location i and time t. θi is a specific group from the speed of 
adjustment coefficient, and φi is a vector long-run relationship. Hence, the model specification in this study with the ARDL parameter 
(1,0,0,0,0,0,0,0), then the error correction model of our model as follows: 

In the Eq. (9), θi = − (1 − δi), Δ is the model's first-difference operator, i is the location, t is the time period, eit is a disturbance term 
assumed to be normally distributed white noise, Resit is mortality of respiratory diseases cases in specific location and time, Eff it is the 
value of residential energy efficiency from the previous estimation, DDit is the sum of heating and cooling degree days value which 
showed the climate change, and the rest PM25it , PM10it and SO2it are the air pollution which measured from fine particulate matters 
PM2.5, PM10, and sulfur dioxide. 

Fig. 4. Relative risk of respiratory diseases and overall efficiency rate.  

ΔlnResit =

θi
(
lnResi,t− 1 − φ1iEff it − φ2iDDit − φ3iPM25it − φ4iPM10it − φ5iSO2it

)
+

∑m− 1

j=1
λi1ΔlnResi,t− 1 +

∑n− 1

j=0
ϑ1iΔEff it +

∑n− 1

j=0
ϑ2iΔDDit

+
∑n− 1

j=0
ϑ3iΔPM25it +

∑n− 1

j=0
ϑ4iΔPM10it +

∑n− 1

j=0
ϑ5iΔSO2it + μi + eit

(9)   
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2.3. Diagnostics 

Before making a measurement, specifically to detect the causality between the mortality rate from chronic respiratory diseases, 
energy efficiency, and air pollution, the data must be tested for feasibility. This test is performed to reduce problems commonly 
encountered when estimating causality, such as cross-sectional dependence, series stationary, and data cointegration. 

According to the cross-sectional dependence (CD) test shown in Table 2 using the model from Pesaran (2004), Frees (1995), and 
Friedman (1937) adapted from De Hoyos and Sarafidis (2006), all models strongly reject the null hypothesis of cross-sectional in-
dependence. This means that the model in this study has a problem with residual correlation under the fixed effect specification, 
indicating the presence of cross-sectional dependence. As a result, the panel unit root test will be analyzed using the cross-sectionally 
augmented IPS (CIPS) test proposed by Pesaran (2007). 

The unit root test results from the CIPS model in Table 3 show that all variables are stationary in the first difference. The optimal lag 
is determined using AIC estimation. The estimation shows that the population variable has a 10% significance level, the size variable 
has a 5% significance level, and the rest has a 1% significance level. In the first difference CIPS, all variables have significant values. 
The panel cointegration test comes next. 

According to the panel cointegration test shown in Table 4, the majority of the tests produced satisfactory results for the three 
proposed models. The Pedroni (1999) and Pedroni (2004) models are used in this study, and the results show that the panel v (modified 
Phillips-Perron t), panel t (augmented Dickey-Fuller t), and ADF group have a significance level of 1%. The ADF panel parameter 
displaying the modified variance ratio and the group rho value displaying the modified Phillips-Perron t has a significance level of 5%, 

Fig. 5. Relative risk of respiratory diseases associated with PM2.5.  
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while the rest shows no significance. This means that five of the seven tests used strongly reject the null hypothesis of the no- 
cointegrated series. The second model is based on Westerlund (2005, 2007) models. The estimation results show that the Gt 
parameter has a significance level of 1%, the Pt parameter has a significance level of 10%, and the rest is insignificant. The third model 
is based on Kao (1999). The parameters Dickey-Fuller t, Unadjusted modified Dickey-Fuller t, and unadjusted Dickey-Fuller t are 
significant at 1% alpha, modified Dickey-Fuller t is significant at 5% alpha, and the rest are not significant. Overall, this test yields a 
satisfactory result because most parameters show a significant value at the 1% level. To put it another way, the null hypothesis of no 
cointegration is strongly rejected. Hence, this study uses panel cointegration regression based on ARDL model. 

3. Results 

3.1. Energy efficiency estimation 

This study calculates the efficiency rate of households in six Taiwanese metropolitan cities to estimate the causality between energy 
efficiency, environmental quality, and respiratory diseases. In the first stage, this study assesses efficiency by utilizing the input de-
mand function in the stochastic frontier analysis proposed by Filippini and Hunt (2011, 2012, 2015). The level of energy efficiency is 
determined by the factors that influence household energy consumption. Table 5 shows the estimated energy efficiency results. Based 
on these estimates, it is clear that family income has a positive impact on energy consumption in Taiwanese urban households. The 
tendency to use electrical energy increases with higher family income. 

The population size factor is another factor that shows a positive impact. According to the SFA estimation results, the population is 
the factor with the highest coefficient value in the proposed model, with every 1% increase in population in Taiwan's urban areas 
causing an increase in energy consumption ranging from 57.3 to 73.9%. Space per person is another factor that has a positive influence, 
which means that the greater the ratio of space to family members, the more energy is required in the household. 

Table 6 shows the results of the energy efficiency frontier estimation for both persistent and transient efficiency. According to the 
results of these calculations, the value of persistent efficiency is less than the value of transient efficiency. Persistent efficiency in 
Taiwan's urban areas has a mean value of 0.841, while transient efficiency has a value of 0.965. According to the estimation results, the 
overall efficiency value is 0.812, implying that increasing overall energy efficiency will save 18.8% of total energy consumption. This 
demonstrates that the level of residential energy inefficiency in Taiwan's urban areas is relatively low. This indicates that the gov-
ernment's energy efficiency policy resulted an effective response (Adha et al., 2022). 

3.2. Energy efficiency, climate change, air pollutions and chronic respiratory diseases 

After estimating the household energy efficiency rate in six major Taiwanese cities, the next step is to calculate the impact of energy 
efficiency, climate change, and air pollution on chronic respiratory disease mortality rates. The climate change factor in this study is 
based on daily temperature changes, which are measured in degree days. Particulate matter 2.5, particulate matter 10, and sulfur 
dioxide (SO2) were the pollution factors used in this study. Table 7 displays the statistical test results. 

For all models in Table 7, the dependent variable is the logarithm of the mortality rate from chronic respiratory diseases. Based on 
the dynamic OLS (DOLS) estimation results, the energy efficiency coefficient value is − 2.216, which is statistically significant at a 5% 
level. This means that energy efficiency has a negative impact on chronic respiratory disease mortality rates. It can also be seen in this 
dynamic OLS model that the climate change variable indicated by degree days and the air pollution factor have a positive effect on the 
mortality rate. 

In addition to DOLS, the dynamic fixed effect model (DFE), the mean group model (MG), and the pooled mean group model (PMG) 

Fig. 6. Relative risk of respiratory diseases and overall PM2.5 level.  
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were used in this study (PMG). According to the DFE estimation results, the energy efficiency variable has a positive long-term effect 
with a coefficient value of 2.016 and is significant at the 5% level on the mortality rate from chronic respiratory diseases. The positive 
impact of energy efficiency can also be seen in the MG estimation results, where the energy efficiency variable has a coefficient value of 
6.339 in the MG model but has no significant effect on the mortality rate. However, in the short term, energy efficiency has a negative 
effect on mortality rate in the DFE and MG models, with coefficient values of − 1.721 and − 13.442, respectively. 

The DFE and MG models also show that the climate change factor indicated by degree days harms respiratory diseases in the long 
run, with coefficient values of − 0.003 and − 0.063, respectively. In the short term, however, these two variables have a positive impact 
on respiratory diseases. Air pollution factors indicated by PM2.5, PM10, and SO2 indicate that in both the DFE and MG models, PM10 has 
a positive effect on respiratory diseases, while PM2.5 and SO2 have a negative effect on respiratory diseases. In addition, the Hausman 
test procedure was used to test the models in this study. The PMG estimation results outperform other models according to the 
Hausman test. As a result, the following interpretation will be based on the PMG estimation results. 

The PMG estimation yields the expected sign. According to the PMG estimation, energy efficiency in households has a negative 
long-term impact with a coefficient value of 10.028 and is significant at the 5% level for the mortality rate from respiratory diseases. It 
also shows that energy efficiency harms respiratory diseases not only in the long term, but also in the short term. Climate change, as 
measured by degree days, has a positive long-term and short-term impact on mortality, with coefficients of 0.035 and 0.012, 
respectively, and is significant at the 1% level. The air pollution factors indicated by PM2.5, PM10, and SO2 in this study show that air 
pollution has a positive and significant impact on respiratory diseases in the long term, with coefficient values of 0.104, 0.065, and 
0.581, respectively. 

Fig. 7. Relative risk of respiratory diseases associated with PM10.  
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4. Discussions 

Overall energy efficiency estimation results show that the level of household energy efficiency in Taiwan's six major cities is 
relatively high. According to the estimation results shown in Table 6, Taiwan's persistent efficiency value is 0.841. Measuring 
persistent efficiency is critical because it provides an overview and explanation of the impact of various inputs in each region while 
remaining constant over time (Kumbhakar et al., 2015). The factors of space per person and space per household are important in 
determining the amount of persistent efficiency in this study. 

According to the estimation results, the space per household factor reduces household energy consumption, but it has no effect on 
the persistent efficiency model. In contrast to space per person, which shows the average building area for each individual in the 
household, it shows a positive relationship on household energy consumption ranging from 0.213 to 0.398, and significant at the 1% 
level. It means that every one ping or 3.305m2 increase in space per person raises household electrical energy consumption by 21.3% to 
39.8%. 

The average overall value of energy efficiency in Taiwan's six major cities is 0.812. In comparison to previous research on energy 
efficiency estimation using the SFA with input demand function approach, the overall efficiency value in Taiwan's major cities is higher 
than the overall efficiency value in Chinese provinces, with an average value of 0.786 (Filippini and Zhang, 2016), and overall effi-
ciency in Indonesia's provinces, with an average value of 0.537 (Adha et al., 2021), and significantly higher than the overall efficiency 
in African countries, with an average value of 0.075 (Adom et al., 2021). However, when compared to the average overall efficiency in 
the United States, the average overall efficiency in the United States is higher at 0.826 (Filippini and Hunt, 2012). 

This study, in addition to providing an estimate of overall efficiency, also provides an overview of changes in energy efficiency in 
each city in Taiwan from 2008 to 2020. Fig. 2 depicts the estimated efficiency in each Taiwanese city. Fig. 2 shows that efficiency levels 
in Taipei and New Taipei decreased during the study period. Aside from these two cities, Taoyuan, Taichung, Tainan, and Kaohsiung 
have increased their efficiency. However, based on those figures, New Taipei has the highest efficiency level when compared to other 
cities. 

Furthermore, PMG estimates show that household energy efficiency has a negative effect on the mortality rate from chronic res-
piratory diseases in six major Taiwanese cities. This means that improving household energy efficiency lowers the risk of mortality 
from chronic respiratory diseases. Indeed, the estimation results show that energy efficiency has the highest coefficient value in 
influencing respiratory diseases when compared to other variables. The findings of this study support the previous studies by Maid-
ment et al. (2014), which state that even if the impact is small, an intervention on energy efficiency in the household will have a 
significant effect on the health of the house occupants. Moreover, the findings of this study back up a study conducted by Faizan and 
Thakur (2019) that demonstrated the negative impact of energy consumption, particularly solid fuel in the home, on respiratory 
disease in India. 

However, the findings of this study are not fully consistent with previous research indicating that energy efficiency interventions 
may have a smaller impact on health, such as respiratory diseases (Bone et al., 2010). S several studies have found that energy effi-
ciency interventions in residential buildings, such as reducing ventilation, are detrimental to health (Weschler, 2011). However, it 
should be noted that the measurement of energy efficiency in this study is not specifically based on the characteristics of the house 
building, but rather on social and economic factors, so that the estimation results reflect the existing demand in the energy market. 

Further analysis was performed on the relative risk with 95% confidence interval of mortality rate from chronic respiratory diseases 
associated with energy efficiency and air pollution in each major city in Taiwan to prove the findings in this study. 

Fig. 3 depicts the relative risk (RR) of death from chronic respiratory diseases in Taiwan's major cities associated with household 
energy efficiency. When compared to other cities in Taiwan, New Taipei has the lowest risk of death from respiratory diseases, with RR 
value of 0.639 (95% CI: 0.58–0.70), and Tainan has the highest RR value of 1469 (95% CI: 1.34–1.61). At the city level, Taipei, 

Fig. 8. Relative risk of respiratory diseases and overall PM10 level.  
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Taoyuan, Taichung, and Kaohsiung showed that the value of the risk of death from respiratory diseases was significant when the 
energy efficiency value was 86.2% with RR 1070 (95% CI: 0.97–1.17), 74.9% with RR 1.154 (95% CI: 1.05–1.26), 89.1% with RR 1115 
(95% CI: 1.01–1.22), and 76.7% with RR 1403 (95% CI: 1.28–1.52), respectively. 

When the results of energy efficiency estimate in each city are compared, the city with the highest energy efficiency level is New 
Taipei, with a value of 99%, and the city with the lowest efficiency rate is Tainan, with a value of 68.1%. This finding validates the PMG 
estimation results, which show a negative relationship between energy efficiency and chronic respiratory diseases. Fig. 4 depicts the 
relationship between energy efficiency and the relative risk of chronic respiratory diseases in Taiwan's major cities. 

Fig. 5 depicts the risk of death due to chronic respiratory diseases in relation to daily mean particulate matter 2.5. According to 
Fig. 4, the RR in Taipei is significant when PM2.5 levels reach 33 g/m3, indicating that PM2.5 increases the risk of death from respiratory 
diseases. This is in contrast to New Taipei, where an increase in PM2.5 levels in the air had no effect on the risk of death in patients with 
chronic respiratory diseases. The RR value in New Taipei was significant when PM2.5 was at 12.5 g/m3, with an RR value of 0.883. 
(95% CI: 0.81–0.96). In Kaohsiung, PM2.5 had a positive and significant impact on the risk of death from chronic respiratory diseases. 
When PM2.5 levels reach 33.5 g/m3, the RR value in Kaohsiung becomes significant. 

According to the estimation results in Fig. 6, an increase in overall ambient PM2.5 increases the risk of chronic respiratory diseases. 
This finding supports many previous studies that show that the pollutant PM2.5 in the environment can increase the risk of death from 
chronic respiratory diseases (Zafirah et al., 2021). Several previous studies have also found that ambient PM2.5 has a significant 
impact on the risk of asthma (Fan et al., 2016; Lee et al., 2006). This is due to the presence of toxic materials in PM2.5, such as metals, 
acids, and nitrates, which are carried by combustion. Furthermore, due to its small size, it will be easily inhaled into the respiratory 

Fig. 9. Relative risk of respiratory diseases associated with SO2.  
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tract and lungs, causing allergies and inflammation and increasing the risk of developing other respiratory diseases (Liu et al., 2017). 
This study investigates the effect of ambient pollutant PM10 on the risk of death from chronic respiratory diseases in addition to 

PM2.5. Fig. 7 depicts the impact of pollutant PM10 on relative risk in each Taiwanese city based on historical data. Based on this graph, 
it is clear that the ambient pollutant PM10 has the potential to increase the risk of death from respiratory diseases. This was especially 
noticeable in cities like Taipei, Taoyuan, Tainan, and Kaohsiung. Meanwhile, in New Taipei and Taichung, ambient pollutant PM10 
does not appear to have a significant impact on chronic respiratory diseases. However, when the overall ambient pollutant in all cities 
in Taiwan is examined, as shown in Fig. 8, the risk of death from chronic respiratory diseases increases significantly when PM10 levels 
reach 50 g/m3. According to the estimation results, the value of the risk of death is significant when PM10 is at 77.8 g/m3 with an RR 
value of 1.328. (95% CI: 1.21–1.45). 

Sulfur dioxide (SO2) is the next ambient pollutant examined in this study. Fig. 8 depicts the estimation results in each city, which 
vary. According to Fig. 9, Kaohsiung has the highest SO2 level at 7.4 ppb, with an RR value of 1.403 (95% CI: 1.28–1.52), and historical 
data from Kaohsiung shows that an increase in SO2 levels in the air increases the risk of death from chronic respiratory diseases. 

Furthermore, the overall ambient pollutant SO2 shown in Fig. 10 demonstrates a positive relationship between an increase in 
ambient pollutant SO2 and the relative risk of chronic respiratory diseases in Taiwan's six major cities. This finding supports main 
findings of a previous study from Ganzhou, China (Zhou et al., 2022), which found a positive exposure-response relationship between 
SO2 concentrations and the relative risk of respiratory inpatient visits. 

This study calculates the impact of climate change as measured by changes in degree days, in addition to measuring the impact of 
household energy efficiency and ambient air pollution on the relative risk of chronic respiratory diseases. Degree days are commonly 
defined as the minimum temperature required in a room to feel comfortable without the use of air conditioners or heating. The degree 
days are calculated by comparing the daily mean temperature to the temperature standard in the region (Shiau et al., 2022). Degree 
days are commonly used in measuring a room's energy use and are closely related to measuring energy efficiency. According to the 
estimation shown in Fig. 11, Kaohsiung has the highest degree days value of 97.1 with an RR value of 1.141 (95% CI: 1.04–1.24). The 
lowest is in Taoyuan with 62.7 62.7 with an RR value of 1.028 (95% CI: 0.93–1.13). 

Fig. 12 depicts the overall impact of degree days on the risk of death from chronic respiratory diseases. When the degree days range 
from 70 to 85, the relative risk of death increases significantly. More than that, and the relative risk appears to have decreased. This 
study's findings back up the findings of a previous study by Yang et al. (2018), which found an inverse relationship between average 
temperature rate and respiratory mortality in Taiwan, and a study by Guo et al. (2022) using Mianyang City observational data. 
Furthermore, the study of Zafirah et al. (2021) found that temperature rate was significantly associated with COPD (chronic 
obstructive pulmonary disease) but not with asthma. 

Degree days serve as an indicator of the temperature conditions that influence indoor energy use and comfort levels without the 
need for additional heating or cooling. In the context of this research, changes in degree days reflect shifts in temperature patterns and 
can have implications for respiratory health. Climate change, characterized by alterations in temperature patterns, can exacerbate 
respiratory conditions due to its influence on air quality, allergens, and the spread of infectious diseases. Higher degree day values, 
indicating increased heating or cooling requirements, may contribute to elevated indoor air pollution levels, which can trigger res-
piratory symptoms and exacerbate existing conditions. 

Additionally, variations in temperature and degree days can affect the dispersion of airborne pollutants, such as particulate matter 
(PM2.5 and PM10) and sulfur dioxide (SO2), which are known to be detrimental to respiratory health (Manisalidis et al., 2020). Changes 
in temperature patterns may lead to the accumulation of pollutants, especially in urban areas (D'Amato et al., 2014), further increasing 
the risk of chronic respiratory diseases. By examining the relationship between degree days, household energy efficiency, ambient air 
pollution, and the relative risk of chronic respiratory diseases, this study provides a new insight into the complex interplay between 

Fig. 10. Relative risk of respiratory diseases and overall SO2 level.  
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climate change, indoor environments, and respiratory health outcomes. Understanding these associations can inform the development 
of targeted interventions and policies to mitigate the adverse health effects of climate change on vulnerable populations. 

5. Conclusions 

This study examines the impact of household energy efficiency, ambient air pollution, and degree days on chronic respiratory 
disease mortality. To the best of our knowledge, this is the first study to evaluate the effect of the energy efficiency frontier on chronic 
respiratory disease mortality rates. The input demand function from the stochastic frontier analysis is used to calculate energy effi-
ciency. After calculating the energy efficiency value for each city, an analysis of the impact of energy efficiency on respiratory disease 
mortality rates is performed. These measurements were made with the ARDL, dynamic panel data model. The PMG ARDL model was 
used, which was chosen based on the best model testing using the Hausman test. This study also investigates the relative risk of 
mortality from chronic respiratory diseases associated with household energy efficiency, degree days, and ambient air pollution, such 
as PM2.5, PM10, and SO2, to support the findings of the PMG analysis. 

The results of energy efficiency measurements using SFA show that household energy efficiency in Taiwan's major cities is rela-
tively high. This estimation is also supported by a low level of persistent inefficiency. According to the measurements, New Taipei has 
the highest energy efficiency level when compared to other cities. At the same time, Tainan has the lowest level of efficiency. It should 
be noted, however, that the level of energy efficiency in New Taipei has gradually decreased year after year. 

Following the determination of the energy efficiency value, the impact of the efficiency on the death rate caused by chronic 

Fig. 11. Relative risk of respiratory diseases associated with degree days.  
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respiratory diseases is assessed. Longitudinal data measurements using PMG show that household energy efficiency reduces the risk of 
death from chronic respiratory diseases. Then, degree days and ambient air pollution, specifically PM2.5, PM10, and SO2, were found to 
have a positive impact on the risk of death from chronic respiratory diseases. This means that improving household energy efficiency 
significantly reduces the risk of death from respiratory diseases. On the other hand, worsening climate change and rising levels of 
ambient air pollution elevate the risk of death from respiratory diseases even further. To support these findings, this study compares 
the relative risk of death from chronic respiratory diseases in Taiwan's major cities based on energy efficiency, degree days, and 
ambient air pollution. As a result, these measurements support the PMG estimation findings of this study. 

Several policy implications can be drawn from the discussion's explanation. First, the Taiwan government should focus its attention 
to household energy efficiency policies in the metropolitan area. This is due to the study's estimation results, which show that 
improving energy efficiency in housing will reduce the risk of death from chronic respiratory diseases. To improve household energy 
efficiency, the government should begin restricting housing development in the metropolitan area because this study shows that 
increasing housing density in urban areas encourages household energy consumption while decreasing energy efficiency. Second, 
encourage more stringent efforts to control air pollution in Taiwan's urban areas. This is based on the findings of this study, which 
found that PM2.5, PM10, and SO2 levels in the environment increase the risk of death from chronic respiratory diseases. Some efforts 
that can be made include encouraging the use of environmentally friendly vehicles such as electric vehicles, maximizing the use of 
public transportation, and encouraging energy conservation programs. 

In addition to the valuable insights provided, this study is subject to certain limitations that should be considered in future research. 
Firstly, the reliance on observational data from only six major cities in Taiwan stems from limited data availability in other locations. 
Future studies should incorporate a broader range of data sources encompassing various geographical regions to enhance the 
generalizability of findings. Furthermore, given the observational nature of this study, establishing a causal relationship between 
energy efficiency, environmental factors, and chronic respiratory diseases presents a challenge. Unmeasured confounding variables or 
other factors influencing the relationship may exist that should have been accounted for in this study. 

Secondly, it is important to acknowledge that the study's time frame, spanning yearly from 2008 to 2020, captures a specific period, 
and the observed relationships may not necessarily reflect long-term trends or changes. Temporal variations in energy efficiency 
practices, environmental policies, and disease patterns could impact the findings. Therefore, future research should explore extended 
periods to gain a more comprehensive understanding of long-term implications. Moreover, while this study focuses on energy effi-
ciency, climate change, environmental factors, and respiratory diseases, it does not fully account for other external factors that may 
influence respiratory health, including individual lifestyle choices, genetic predispositions, and access to healthcare. Future studies 
should consider incorporating these additional variables into the research framework to provide a more comprehensive analysis. 
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